Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi 下载 网盘 caj lrf pdf txt 阿里云

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:6分
书籍信息完全性:3分
网站更新速度:5分
使用便利性:6分
书籍清晰度:8分
书籍格式兼容性:3分
是否包含广告:4分
加载速度:4分
安全性:4分
稳定性:4分
搜索功能:3分
下载便捷性:8分
下载点评
- azw3(302+)
- 二星好评(520+)
- 差评少(182+)
- 超值(118+)
- 图文清晰(222+)
- 体验差(564+)
- 五星好评(401+)
下载评价
- 网友 薛***玉:
就是我想要的!!!
- 网友 訾***晴:
挺好的,书籍丰富
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 晏***媛:
够人性化!
- 网友 戈***玉:
特别棒
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 堵***格:
OK,还可以
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
狂热分子 mobi 下载 网盘 caj lrf pdf txt 阿里云
18秋课时作业本 4年级数学上(北师版) mobi 下载 网盘 caj lrf pdf txt 阿里云
2023中国农业银行招聘考试 历年真题汇编及标准预测试卷【新华集团自营】 mobi 下载 网盘 caj lrf pdf txt 阿里云
编辑力十讲——与青年编辑朋友聊做书 高若海 著 商务印书馆 mobi 下载 网盘 caj lrf pdf txt 阿里云
Oxford Bookworms Library Factfiles: Level 2: The Olympic Games 2级:奥林匹克运动会(英文原版) mobi 下载 网盘 caj lrf pdf txt 阿里云
普通化学实验 mobi 下载 网盘 caj lrf pdf txt 阿里云
和大人起读注音版年级上册套4册快乐读书吧年级上册小学生课外阅读书籍语文同步训练6-9岁儿童童话故事带拼音读物 mobi 下载 网盘 caj lrf pdf txt 阿里云
中国式人情世故+祝酒词全集 共2册 正版当当自营同款主持致辞酒场庆典贺词技巧范例个人即兴演讲餐桌商务公司社交礼仪书成功励志职场际交往酒桌宝典口才训练社交技巧 mobi 下载 网盘 caj lrf pdf txt 阿里云
乐挥高尔夫:从零到灵 mobi 下载 网盘 caj lrf pdf txt 阿里云
园林绿化工程识图与算量 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 中外园林史 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 天一库课新大纲2023年福建省普通高校专升本考试用书大学语文考前冲刺模拟试卷题库 福建省统招在校生应届生专升本考试用书考试 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 影视动画特效后期合成技术的应用与研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 9787560631882 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 围城 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 走遍全球:美国南部 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 再保险契约 经济科学出版社 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 尖子生题库六年级数学(下册) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 商务谈判(附光盘)/剑桥商务英语沟通技能 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 数码照相:奥林巴斯系列——神奇数码 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:4分
人物塑造:4分
主题深度:9分
文字风格:3分
语言运用:9分
文笔流畅:5分
思想传递:5分
知识深度:8分
知识广度:7分
实用性:7分
章节划分:4分
结构布局:6分
新颖与独特:4分
情感共鸣:7分
引人入胜:5分
现实相关:5分
沉浸感:4分
事实准确性:7分
文化贡献:8分