生物信息学课程导引 mobi 下载 网盘 caj lrf pdf txt 阿里云

生物信息学课程导引电子书下载地址
内容简介:
本书根据清华大学承办的全国生物信息学暑期学校课程,高度概括地介绍了与生物信息学研究紧密相关的11门基础课程和15个前沿专题报告。全书分12章,包括: 生物信息学引论、生物信息学中的基础统计、计算基因组学专题、生物信息学中的高级统计、计算生物学算法基础、生物信息学中的多元统计、人类疾病关联研究方法与实例、生物信息学中的数据挖掘与知识发现、生物信息学应用工具、蛋白质结构与功能基础、中医药研究的计算系统生物学方法、生物信息学与计算系统生物学前沿等。本书不仅可以作为生物信息学初学者的入门读物,还可作为生物信息学领域专业研究人员高度概括而又不失系统性的参考书籍。
书籍目录:
1 BasicsforBioinfbrmatics.
Xuegong Zhang,Xueya Zhou,and Xiaowo Wang
1.1 WhatIs l3;ioinformatics
1.2 SomeBasicBiology
1.2.1 Scale andTime.
1.2.2 Cells.
1.2.3 DNA and Chromosome
1.2.4 TheCen~a1Dogma.
1.2.5 GenesandtheGenome.一
1.2.6 Measurements Along the Central Dogma
1.2.7 DNA Sequencing一
1.2.8 Transcriptomics and DNA Microarrays
1.2.9 Proteomics and Mass Spectrometry.
1.2.10 ChIP-Chip andChIP.Seq
1.3 ExampleTopicsofBioinformatics
1.3.1 Examples of Algorithmatic Topics
1.3.2 ExamplesofStatisticalTopics.
1.3.3 Machine Learning and Pattern
RecognitionExamples
1.3.4 Basic Principles ofGenetics.
Re:fe:rences
2 Basic StatisticsforBioinformatics.
Yuanlie Lin and Rui Jiang
2.1 Introduction.
2.2 FoundationsofStatistics
2.2.1 Probabilities
2.2.2 RandomVariables
2.2.3 Multiple Random Variables
2.2.4 Distributions.
2.2.5 random sampling.
2.2.6 suf.cientstatistics
2.3 point estimation
2.3.1 method of moments.
2.3.2 maximum likelihoodestimators
2.3.3 bayes estimators
2.3.4 mean squared error.
2.4 hypothesistesting
2.4.1 likelihood ratio tests
2.4.2 errorprobabilitiesandthepowerfunction
2.4.3 p-values
2.4.4 some widely used tests
2.5 intervalestimation
2.6 analysis of variance
2.6.1 one-way analysis of variance.
2.6.2 two-wayanalysisofvariance.
2.7 regression models
2.7.1 simple linear regression.
2.7.2 logistic regression
2.8 statisticalcomputingenvironments.
2.8.1 downloadingand installation
2.8.2 storage, input, and outputof data.
2.8.3 distributions.
2.8.4 hypothesis testing
2.8.5 anova and linear model
references
3 topics in computational genomics 69 michael q. zhang and andrew d. smith
3.1 overview:genomeinformatics
3.2 finding protein-codinggenes.
3.2.1 how to identifya coding exon
3.2.2 how to identifya gene with multiple exons
3.3 identifyingpromoters.
3.4 genomic arraysand acgh/cnp analysis
3.5 introduction on computational analysis of transcriptionalgenomicsdata
3.6 modelingregulatory elements
3.6.1 word-based representations
3.6.2 thematrix-basedrepresentation
3.6.3 other representations.
3.7 predicting transcriptionfactor binding sites.
3.7.1 the multinomial model for describing sequences
3.7.2 scoring matrices and searching sequences
3.7.3 algorithmic techniques for identifying high-scoringsites
3.7.4 measuring statistical signi.cance of matches
3.8 modelingmotif enrichmentin sequences
3.8.1 motif enrichmentbased on likelihoodmodels.
3.8.2 relative enrichment between two sequence sets
3.9 phylogeneticconservationof regulatoryelements
3.9.1 three strategies for identifying conserved binding sites
3.9.2 considerationswhen using phylogeneticfootprinting
3.10 motif discovery.
3.10.1 word-basedandenumerativemethods
3.10.2 general statistical algorithms applied to motif discovery
3.10.3 expectationmaximization
3.10.4 gibbs sampling
references
4 statistical methods in bioinformatics 101 jun s. liu and bo jiang
4.1 introduction
4.2 basics of statistical modeling and bayesian inference.
4.2.1 bayesian method with examples.
4.2.2 dynamic programmingand hidden markovmodel
4.2.3 metropolis-hastingsalgorithm and gibbs sampling
4.3 gene expressionand microarrayanalysis
4.3.1 low-level processing and differential expression identi.cation
4.3.2 unsupervised learning
4.3.3 dimensionreductiontechniques
4.3.4 supervised learning
4.4 sequencealignment
4.4.1 pair-wise sequence analysis.
4.4.2 multiple sequence alignment
4.5 sequence pattern discovery
4.5.1 basic models and approaches
4.5.2 gibbsmotifsampler
4.5.3 phylogenetic footprinting method and the identi.cation of cis-regulatorymodules.
4.6 combining sequence and expression information for analyzing transcriptionregulation
4.6.1 motifdiscoveryinchip-arrayexperiment.
4.6.2 regression analysis of transcriptionregulation
4.6.3 regulatoryroleofhistonemodi.cation
4.7 protein structure and proteomics
4.7.1 protein structure prediction
4.7.2 protein chip data analysis.
references
5 algorithms in computational biology . 151 tao jiang and jianxing feng
5.1 introduction
5.2 dynamic programmingand sequence alignment
5.2.1 the paradigm of dynamic programming
5.2.2 sequence alignment
5.3 greedy algorithmsfor genome rearrangement
5.3.1 genome rearrangements
5.3.2 breakpoint graph, greedy algorithm and approximationalgorithm 159 references
6 multivariate statistical methods in bioinformatics research . 163 lingsongzhang and xihong lin
6.1 introduction
6.2 multivariate normal distribution
6.2.1 de.nition and notation
6.2.2 properties of the multivariate normal distribution
6.2.3 bivariate normal distribution
6.2.4 wishart distribution.
6.2.5 sample mean and covariance
6.3 one-sampleand two-sample multivariate hypothesis tests
6.3.1 one-sample t test for a univariate outcome
6.3.2 hotelling's t2 test for the multivariate outcome
6.3.3 properties of hotelling'st2 test.
6.3.4 paired multivariate hotelling's t2 test
6.3.5 examples
6.3.6 two-samplehotelling's t2 test
6.4 principalcomponentanalysis.
6.4.1 de.nition of principal components
6.4.2 computing principalcomponents
6.4.3 variance decomposition
6.4.4 pcawithacorrelationmatrix.
6.4.5 geometricinterpretation
6.4.6 choosing the numberof principal components
6.4.7 diabetes microarraydata.
6.5 factor analysis
6.5.1 orthogonalfactor model
6.5.2 estimating the parameters
6.5.3 an example
6.6 linear discriminant analysis
6.6.1 two-grouplinear discriminant analysis.
6.6.2 an example
6.7 classi.cation methods
6.7.1 introductionof classi.cation methods
6.7.2 k-nearestneighbormethod
6.7.3 density-basedclassi.cationdecisionrule.
6.7.4 quadraticdiscriminantanalysis.
6.7.5 logistic regression
6.7.6 supportvector machine
6.8 variableselection.
6.8.1 linear regression model
6.8.2 motivation for variable selection
6.8.3 traditionalvariableselectionmethods
6.8.4 regularization and variable selection
6.8.5 summary
references
7 association analysis for human diseases: methods and examples . 233 jurg ott and qingrunzhang
7.1 whydoweneedstatistics.
7.2 basic concepts in population and quantitative genetics.
7.3 genetic linkageanalysis
7.4 geneticcase-controlassociationanalysis.
7.4.1 basic steps in an association study
7.4.2 multiple testing corrections
7.4.3 multi-locusapproaches
7.5 discussion.
references
8 data mining and knowledge discovery methods with case examples
s. bandyopadphyayand u. maulik
8.1 introduction
8.2 different tasks in data mining
8.2.1 classi.cation
8.2.2 clustering
8.2.3 discoveringassociations.
8.2.4 issues and challengesin data mining
8.3 some commontools and techniques.
8.3.1 arti.cial neural networks
8.3.2 fuzzy sets and fuzzy logic
8.3.3 genetic algorithms
8.4 case examples
8.4.1 pixelclassi.cation
8.4.2 clustering of satellite images
8.5 discussionandconclusions
references
9 applied bioinformatics tools 271 jingchu luo
9.1 introduction
9.1.1 welcome.
9.1.2 about this web site
9.1.3 outline
9.1.4 lectures
9.1.5 exercises.
9.2 entrez
9.2.1 pubmed query
9.2.2 entrez query
9.2.3 my ncbi
9.3 expasy
9.3.1 swiss-prot query
9.3.2 explore the swiss-prot entry hba human.
9.3.3 database query with the ebi srs
9.4 sequencealignment
9.4.1 pairwise sequence alignment
9.4.2 multiple sequence alignment
9.4.3 blast
9.5 dna sequence analysis
9.5.1 gene structure analysis and prediction
9.5.2 sequencecomposition
9.5.3 secondarystructure.
9.6 protein sequence analysis
9.6.1 primary structure
9.6.2 secondarystructure.
9.6.3 transmembranehelices
9.6.4 helical wheel
9.7 motif search
9.7.1 smart search
9.7.2 memesearch.
9.7.3 hmm search
9.7.4 sequence logo
9.8 phylogeny
9.8.1 protein
9.8.2 dna
9.9 projects
9.9.1 sequence, structure, and function analysis of the bar-headed goose hemoglobin.
9.9.2 exercises.
9.10 literature
9.10.1 courses and tutorials
9.10.2 scienti.c stories
9.10.3 free journalsand books
9.11 bioinformaticsdatabases
9.11.1 list of databases
9.11.2 database query systems
9.11.3 genome databases
9.11.4 sequencedatabases.
9.11.5 proteindomain,family,andfunctiondatabases.
9.11.6 structure databases
9.12 bioinformaticstools
9.12.1 list of bioinformatics tools at international bioinformaticscenters
9.12.2 web-basedbioinformaticsplatforms
9.12.3 bioinformatics packages to be downloaded and installed locally
9.13 sequence analysis
9.13.1 dotplot.
9.13.2 pairwise sequence alignment
9.13.3 multiple sequence alignment
9.13.4 motif finding
9.13.5 gene identi.cation
9.13.6 sequence logo
9.13.7 rna secondary structure prediction
9.14 database search.
9.14.1 blast search
9.14.2 other database search
9.15 molecular modeling
9.15.1 visualizationandmodelingtools
9.15.2 protein modelingweb servers
9.16 phylogeneticanalysisandtreeconstruction.
9.16.1 list of phylogenyprograms
9.16.2 online phylogenyservers
9.16.3 phylogenyprograms
9.16.4 displayofphylogenetictrees
references
10 foundations for the study of structure and function of proteins 303 zhirongsun
10.1 introduction
10.1.1 importanceof protein.
10.1.2 amino acids, peptides, and proteins.
10.1.3 some noticeable problems
10.2 basic concept of protein structure
10.2.1 different levels of protein structures
10.2.2 acting force to sustain and stabilize the high-dimensionalstructure of protein
10.3 fundamentalof macromoleculesstructuresand functions
10.3.1 differentlevelsofproteinstructure.
10.3.2 primary structure
10.3.3 secondarystructure.
10.3.4 supersecondarystructure.
10.3.5 folds
10.3.6 summary
10.4 basis of protein structure and function prediction
10.4.1 overview
10.4.2 the signi.cance of protein structure prediction
10.4.3 the field of machine learning.
10.4.4 homological protein structure prediction method
10.4.5 abinitiopredictionmethod
reference.
11 computational systems biology approaches for deciphering traditional chinese medicine 337 shao li and le lu
11.1 introduction
11.2 disease-related network.
11.2.1 fromagenelisttopathwayandnetwork
11.2.2 construction of disease-related network.
11.2.3 biological network modularity and phenotypenetwork.
11.3 tcm zheng-related network
11.3.1 "zheng" in tcm
11.3.2 acsb-basedcasestudyfortcmzheng
11.4 network-based study for tcm "fu fang"
11.4.1 systems biology in drug discovery
11.4.2 network-based drug design
11.4.3 progresses in herbal medicine
11.4.4 tcm fu fang (herbal formula)
11.4.5 a network-based case study for tcm fu fang
references
12 advanced topics in bioinformatics and computational biology . 369 bailin hao, chunting zhang, yixue li, hao li, liping wei, minoru kanehisa, luhualai, runsheng chen, nikolaus rajewsky, michael q. zhang, jingdonghan, rui jiang, xuegong zhang, and yanda li
12.1 prokaryotephylogenymeets taxonomy
12.2 z-curve method and its applications in analyzing eukaryoticand prokaryotic genomes
12.3 insights into the coupling of duplication events and macroevolution from an age pro.le of transmembranegene families
12.4 evolution of combinatorial transcriptional circuits inthefungallineage.
12.5 can a non-synonymous single-nucleotide polymorphism (nssnp) affect protein function analysis from sequence, structure, and enzymatic assay
12.6 bioinformatics methods to integrate genomic andchemicalinformation
12.7 from structure-based to system-based drug design
12.8 progressin the study of noncodingrnas in c. elegans
12.9 identifyingmicrornas and their targets
12.10 topics in computationalepigenomics
12.11 understanding biological functions through molecular networks
12.12 identi.cationof network motifs in random networks
12.13 examples of pattern recognition applicationsin bioinformatics.
12.14 considerationsin bioinformatics
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:3分
书籍信息完全性:7分
网站更新速度:8分
使用便利性:3分
书籍清晰度:9分
书籍格式兼容性:8分
是否包含广告:3分
加载速度:5分
安全性:4分
稳定性:5分
搜索功能:8分
下载便捷性:4分
下载点评
- 不亏(216+)
- 可以购买(185+)
- 少量广告(651+)
- 无缺页(273+)
- 微信读书(279+)
- 内容完整(325+)
- 情节曲折(587+)
- 值得下载(111+)
- 中评多(582+)
- 下载快(414+)
- 无颠倒(235+)
- 简单(115+)
- 经典(415+)
下载评价
- 网友 养***秋:
我是新来的考古学家
- 网友 谭***然:
如果不要钱就好了
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 孙***夏:
中评,比上不足比下有余
喜欢"生物信息学课程导引"的人也看了
中国艺术设计名校讲堂系列丛书:环境建筑设计与表现 mobi 下载 网盘 caj lrf pdf txt 阿里云
Algebra II For Dummies(ISBN=9780471775812) mobi 下载 网盘 caj lrf pdf txt 阿里云
统计业务知识学习指导与习题(2023版) mobi 下载 网盘 caj lrf pdf txt 阿里云
【预售】【翰德图书】热卖营销学:促销实战SOP一次上手(热卖新装版) 港台原版图书籍台版正版繁体中文 堀田博和 行销企划 mobi 下载 网盘 caj lrf pdf txt 阿里云
二胡高胡(1级-10级表演级星海音乐学院社会艺术水平考级全国通用教材) mobi 下载 网盘 caj lrf pdf txt 阿里云
近代化学实验 mobi 下载 网盘 caj lrf pdf txt 阿里云
企业内机动车辆安全技术题库1CD-ROM mobi 下载 网盘 caj lrf pdf txt 阿里云
现代跆拳道教程 mobi 下载 网盘 caj lrf pdf txt 阿里云
用人单位职业健康监护工作手册 刘喜房 主编 mobi 下载 网盘 caj lrf pdf txt 阿里云
Access 2016数据库应用基础 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 拉萨精典寺院游 mobi 下载 网盘 caj lrf pdf txt 阿里云
- The Cat Encyclopedia mobi 下载 网盘 caj lrf pdf txt 阿里云
- 每天学一点金融投资学 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 预售【外图台版】周易与儒道墨(平) / 张立文 东大 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 组织行为学 第六版第6版 张德 高等教育正版 面向21世纪教材高等学校管理专业基础课程教材 组织行为学教程 MBA教材人力资源管理 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 三叶虫 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 2021版学霸提分笔记初中化学初一初二初三中考通用版全彩漫画基础知识讲解工具教辅导书 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 2023秋季小学学霸语文六年级上册 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 四川散见唐宋佛道龛窟总录(广元卷)(精) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 拾界(长篇新作 推理罪工场 井中月 悬疑推理小说 十界) mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:8分
人物塑造:8分
主题深度:6分
文字风格:3分
语言运用:3分
文笔流畅:3分
思想传递:7分
知识深度:6分
知识广度:3分
实用性:6分
章节划分:3分
结构布局:7分
新颖与独特:3分
情感共鸣:8分
引人入胜:3分
现实相关:9分
沉浸感:4分
事实准确性:9分
文化贡献:9分