Euler mobi 下载 网盘 caj lrf pdf txt 阿里云

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:8分
书籍信息完全性:7分
网站更新速度:5分
使用便利性:3分
书籍清晰度:5分
书籍格式兼容性:9分
是否包含广告:8分
加载速度:9分
安全性:8分
稳定性:7分
搜索功能:7分
下载便捷性:4分
下载点评
- 体验还行(76+)
- 无颠倒(525+)
- 书籍完整(479+)
- mobi(372+)
- 品质不错(226+)
- 强烈推荐(190+)
- 内容完整(471+)
- 体验差(104+)
- 引人入胜(392+)
- 无盗版(680+)
下载评价
- 网友 屠***好:
还行吧。
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 敖***菡:
是个好网站,很便捷
- 网友 索***宸:
书的质量很好。资源多
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 晏***媛:
够人性化!
- 网友 郗***兰:
网站体验不错
- 网友 苍***如:
什么格式都有的呀。
- 网友 堵***洁:
好用,支持
- 网友 步***青:
。。。。。好
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 家***丝:
好6666666
- 网友 康***溪:
强烈推荐!!!
喜欢"Euler"的人也看了
深入浅出CoffeeScript mobi 下载 网盘 caj lrf pdf txt 阿里云
食品化学 邵颖,刘洋 主编 mobi 下载 网盘 caj lrf pdf txt 阿里云
德福听力进阶训练 mobi 下载 网盘 caj lrf pdf txt 阿里云
了不起的中国超级食物 mobi 下载 网盘 caj lrf pdf txt 阿里云
【一年级】技能铅笔刀综合版 Smart Start First Grade 聪慧启蒙系列 Evan moor 加州教材教辅练习册英文原版 Skill Sharpeners mobi 下载 网盘 caj lrf pdf txt 阿里云
软件定义网络中规则管理关键技术研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
三国演义-中国古典名著连环画 mobi 下载 网盘 caj lrf pdf txt 阿里云
司马懿 : 忍者为王 趣味讲述三国“忍者”司马懿的一生 mobi 下载 网盘 caj lrf pdf txt 阿里云
【中商原版】自由的基础 英文原版 Word Cloud Classics: Foundations Of Freedom Boxed Set 美国宪法 汉密尔顿 富兰克林自 mobi 下载 网盘 caj lrf pdf txt 阿里云
神探陈汉雄 午夜枪声 天津人民出版社 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 2013中公版全真模拟预测试卷申论-新疆公务员考试 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 歌曲写作基础教程 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 乌龙院大长篇之活宝传奇(1) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 综合能力测试笔试全真题库(2022版浙江省选调生招录考试辅导用书) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 幸福,从看见自己开始 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 包邮北斗地图 初中地理手绘图册 初中地理辅导资料地理图文详解知识大全初一初二初三中学地理 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 大运河 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 2023-2024年活页题选 名师名题单元双测卷 选择性必修1 政治 RJ (人教新教材) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 【附赠MP3光盘】英语语音学习用书 零基础英语发音方法 元音和辅音的指导秘诀 帮助提高整体语音水平 可搭英语语音入门教程正版 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 手绘设计表现 林文冬 主编 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:8分
人物塑造:7分
主题深度:5分
文字风格:7分
语言运用:6分
文笔流畅:7分
思想传递:8分
知识深度:8分
知识广度:9分
实用性:5分
章节划分:8分
结构布局:5分
新颖与独特:4分
情感共鸣:4分
引人入胜:9分
现实相关:6分
沉浸感:5分
事实准确性:4分
文化贡献:7分