振声学(第一卷) mobi 下载 网盘 caj lrf pdf txt 阿里云

振声学(第一卷)电子书下载地址
内容简介:
Vibro-Acoustics
Noise pollution is a general problem.Structures excited by dynamic forces radiate noise.The art of noise reduction requires an understanding of vibro-acoustics.This topic describes how structures are excited,energy flows from an excitation point to a sound radiating surface,and finally how a structure radiates noise to a surrounding fluid.The aim of this text is to give a fundamental analysis and a mathematical presentation of these phenomena.The text is intended for graduate students,researchers and engineers working in the field of sound and vibration.
书籍目录:
Preface
Notations
Chapter 1 MECHANICAL SYSTEMS WITH ONE DEGREE OF FREEDOM
1.1 A simple mass-spring system
1.2 Free vibrations
1.3 Transient vibrations
1.4 Forced harmonic vibrations
1.5 Fourier series
1.6 Complex notation
Problems
Chapter 2 FREQUENCY DOMAIN
2.1 Introduction
2.2 Frequency response
2.3 Correlation functions
2.4 Spectral density
2.5 Examples of spectral density
2.6 Coherence
2.7 Time averages of power and energy
2.8 Frequency response and point mobility functions
2.9 Loss factor
2.10 Response of a 1-DOF system,a summary
Problems
Chapter 3 WAVES IN SOLIDS
3.1 Stresses and strains
3.2 Losses in solids
3.3 Transverse waves
3.4 Longitudinal waves
3.5 Torsional waves
3.6 Waves on a string
3.7 Bending or flexural waves-beams
3.8 Waves on strings and beams-a comparison
3.9 Flexural waves-plates
3.10 Orthotropic plates
3.11 Energy flow
Problems
Chapter 4 INTERACTION BETWEEN LONGITUDINAL AND TRANSVERSE WAVES
4.1 Generalised wave equation
4.2 Intensity
4.3 Coupling between longitudinal and transverse waves
4.4 Bending of thick beams/plates
4.5 Quasi longitudinal waves in thick plates
4.6 Rayleigh waves
4.7 Sandwich plates-general
4.8 Bending of sandwich plates
4.9 Equations governing bending of sandwich plates
4.10 Wavenumbers of sandwich plates
4.11 Bending stiffness of sandwich plates
4.12 Bending of I-beams
Problems
Chapter 5 WAVE ATTENUATION DUE TO LOSSES AND TRANSMISSION ACROSS JUNCTIONS
5.1 Excitation and propagation of L-waves
5.2 Excitation and propagation of F-waves
5.3 Point excited infinite plate
5.4 Spatial Fourier transforms
5.5 Added damping
5.6 Losses in sandwich plates
5.7 Coupling between flexural and inplane waves
5.8 Transmission of F-waves across junctions,diffuse incidence
5.9 Transmission of F-waves across junctions,normal incidence
5.10 Atenuation due to change of cross section
5.11 Some other methods to increase attenuation
5.12 Velocity level differences and transmission losses
5.13 Measurements on junctions between beams
Problems
Chapter 6 LONGITUDINAL VIBRATIONS OF FINITE BEAMS
6.1 Free longitudinal vibrations in finite beams
6.2 Forced longitudinal vibrations in finite beams
6.3 The mode summation technique
6.4 Kinetic energy of vibrating beam
6.5 Mobilities
6.6 Mass mounted on a rod
6.7 Transfer matrices
Problems
Chapter 7 FLEXURAL VIBRATIONS OF FINITE BEAMS
7.1 Free flexural vibrations of beams
7.2 Orthogonality and norm of eigenfunctions
7.3 Forced excitation of F-waves
7.4 Mode summation and modal parameters
7.5 Point mobility and power
7.6 Transfer matrices for bending of beams
7.7 Infinite periodic structures
7.8 Forced vibration of periodic structures
7.9 Finite composite beam
Problems
Chapter 8 FLEXURAL VIBRATIONS OF FINITE PLATES
8.1 Free vibrations of simply supported plates
8.2 Forced response of a simply supported plate
8.3 Forced excitation of a rectangular plate with two opposite sides simply supported
8.4 Power and energy
8.5 Mobility of plates
8.6 The Rayleigh-Ritz method
8.7 Application of the Rayleigh-Ritz method
8.8 Non flat plates
8.9 The effect of an added mass or mass-spring system on plate vibrations
8.10 Small disturbances
8.11 Plates mounted on resilient layers
8.12 Vibration of orthotropic plates
8.13 Circular and homogeneous plates
8.14 Bending of plates in tension
Problems
References
Index
作者介绍:
Anders C.Nilsson holds MSc in Engineering Physics from University of Lund and Dr.Tech.in Sound and Vibration from Chalmers University in Sweden.Anders C.Nilsson worked with problems on the propagation of sound and sonic booms at Boeing Co.,Seattle,USA.Later he moved to Norway and the Research Division of Det Norske Veritas.At Veritas Anders C.Nilsson worked on the propagation of structureborne sound in large built up structures and on the excitation of plates from flow and cavitation.Anders C.Nilsson then transferred to Denmark and was head of the Danish Acoustical Institute for four years.His main activities in Denmark concerned building acoustics.In 1987,Anders C.Nilsson was appointed professor of Applied Acoustics at KTH in Stockholm,Sweden.He was also the head of the Department of Vehicle Engineering and the founder and head,until 2002,of the Marcus Wallenberg Laboratory of Sound and Vibration Research (MWL).Anders C.Nilsson has been a guest professor at James Cook University,Australia,INSA-Lyon in France and at the Institute of Acoustics,Chinese Academy of Sciences in Beijing and is professor emeritus at MWL,KTH since 2008.His main interests are problems relating to composite structures as well as vehicle acoustics.Bilong Liu received his PhD in acoustics at the Institute of Acoustics,Chinese Academy of Sciences in 2002.Then he worked on noise transmission through aircraft structures at MWL,KTH,Sweden till 2006.
Bilong Liu also holds PhD in applied acoustics from MWL,KTH.During Aug.2004 to Jan.2005,he worked on pipe and pump noise at the University of Western Australia in Perth.From 2007 he has been working as a research professor at the Institute of Acoustics,Chinese Academy of Sciences,and from 2011 he has been acting as an associate editor for an Elsevier journal-Applied Acoustics.His main interests include vibro-acoustics,acoustics materials,fluid-structure interaction,duct acoustics,active noise control,smart acoustic materials and structures.
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Chapter 1
MECHANICAL SYSTEMS WITH ONE DEGREE OF FREEDOM
Innoisereducingengineeringtheconsequencesofchangesmadetoasystemmustbeunderstood.Questionsposedcouldbeonthee.ectsofchangestothemass,sti.nessorlossesofthesystemandhowthesechangescanin.uencethevibrationofornoiseradiationfromsomestructures.Realconstructionscertainlyhavemanyorinfactin.nitemodesofvibration.However,toacertainextent,eachmodecanoftenbemodelledasasimplevibratorysystem.Themostsimplevibratorysystemcanbedescribedbymeansofarigidmass,mountedonaverticalmasslessspring,whichinturnisfastenedtoanin.nitelysti.foundation.Ifthemasscanonlymoveintheverticaldirectionalongtheaxisofthespring,thesystemhasonedegreeoffreedom(1-DOF).Thisisavibratorysystemneveractuallyencounteredinpractice.However,certaincharacteristicsofsystemswithmanydegreesoffreedom,orrather,continuoussystemswithanin.nitedegreeoffreedom,canbedemonstratedbymeansoftheverysimple1-DOFmodel.Forthisreason,thebasicmassspringsystemisusedinthischaptertoillustratesomeofthebasicconceptsconcerningfreevibrations,transient,harmonicandothertypesofforcedexcitation.Kineticandpotentialenergiesarediscussedaswelltheirdependenceontheinputpowertothesystemanditslosses.
1.1 A simple mass-spring system
A simple mass-spring system is shown in Fig. 1-1. The mass is m and thespringconstantk0.Thefoundationtowhichthespringiscouplediscompletelysti.andunyielding.ItisassumedthatthespringismasslessandthatthespringforcefollowsthesimpleHooke’slaw.Thus,whenthespringiscompressedthedistancex,thereactingforcefromthespringonthemassisequaltok0x.ThedampingforceduetolossesinthesystemisdenotedFd.Whenthesystemisatrest,thedampingforceFdisequaltozero.Thestaticloadonthespringismgwheregistheaccelerationduetogravity.Duetothestaticload,thespringiscompressedthedistanceΔx.Thereactingforceonthemassisk0Δx.Thus
?
Δxk0=mg(1-1)
?
Therefore, in principle if the static
de.ection is known, then the spring
constant can be determined. How
ever, for real systems, the static and
dynamic sti.ness are not necessarily
equal. In particular, this is quite
evidentforvarioustypesofrubberFig. 1-1 Simple mass-spring system springs. In addition, a real mount has a certain mass.
Fig.1-1showsasimplemass-springsystemexcitedbyanexternalforceF(t)andadampingforceFd.Theequationofmotionforthissimplesystemis
mx¨+k0x+Fd=F(t)(1-2)
Thedeviationofthemassfromitsequilibriumpositionisx=x(t).Whenthemassisatrest,thenx=0.ThedampingforceFdisdeterminedbythelossesinthesystem.Variousprocessescancausetheselosses.Someexamplesofoften-usedsimpletheoreticalmodelsare:
i) Viscous damping;
ii) Structural or hysteretic damping;
iii) Frictional losses or Coulomb damping;
iv) Velocity squared damping.
Thedampingforcescanbeillustratedbyassumingasimpleharmonicdisplacementofthemass.Themotionisgivenbyx=x0sin(ωt).Heretime
?
istandω=2πfwhereωistheangularfrequencyandfthecorrespondingfrequency.Thedampingforcesforthefourcasesare:
i) Viscous damping.
Fd=cx?=cx0ωcos(ωt)(1-3)
?
Thedampingforceisproportionaltothevelocity?xofthemass,cisaconstant.Theenergydissipatedpercycle,i.e.inatimeintervalt0.t.t0+T,whereωT=2π,dependslinearlyonω,theangularfrequencyofoscillation.Thistypeofdampingoccursforsmallvelocitiesforasurfaceslidingona.uid.lmandfordashpotsandhydraulicdampers.
ii) Structural damping.
αα
Fd=x?=x0cos(ωt)(1-4)πω ? π ??
Theamplitudeofthedampingforceisproportionaltotheamplitudeofthedisplacementbutindependentoffrequencyforharmonicoscillations.Theenergydissipatedpercycleofmotionisfrequencyindependentoverawidefrequencyrangeandproportionaltothesquareoftheamplitudeofvibration.Thelossesinsolidscanoftenbedescribedinthisway.Ineq.(1-4)αisaconstant.
iii) Frictional damping.
Fd = ±F (1-5)
Thefrictionalforcehasaconstantmagnitude.Theplusorminussignshouldbedeterminedsothatthefrictionalforceiscounteractingthemotionofthemass.Thefrictionalforcecanbeduetoslidingbetweendrysurfaces.
iv) Velocity squared damping.
Fd = ±qx?2 = ±q(x0ωcos(ωt))2 (1-6)
? ??
Thedampingforceisproportionaltothevelocitysquaredandthesignshouldbechosensothattheforceagainiscounteractingthemotionofthemass.Ineq.(1-6)qisaconstant.Abodymovingfairlyrapidlyina.uidcouldcausethisdampingforce.
Thestructuraldampingofeq.(1-4)onlyappliesforaharmonicdis-placementofthemass.AmoregeneraldescriptionofstructuraldampingispresentedinChapter3.Examplesofenergydissipationduetoviscous,structuralandfrictionallossesaregiveninproblems1.1to1.3.
Theforcerequiredmovingthemassofasimple1-DOFsystemdependofthetypedampinginthespring.Formaintainingamotionx=x0sin(ωt)
?
ofthemass,theforcewhichmustbeappliedtothemassisobtainedfromeq.(1-2)asF=mx¨+k0x+Fd.TwocasesareillustratedinFigs.1-2and1-3.Inthe.rstexample,Fig.1-2,thedampingforceisviscous.Anellipserepresentstheforce-displacementrelationshipforthiscase.Themi-noraxisoftheellipseisproportionaltotheangularfrequencyωandtheparametercofeq.(1-3).Structuraldampinggivesthesametypeofforce-displacementcurve.However,forthiscasetheminoraxisoftheellipseisjustproportionaltothecoe.cientα,eq.(1-4),andnottotheangularfre-quency.Inthesecondexample,Fig.1-3,themassisexposedtofrictionaldamping.Thearrowinthediagramindicateshowforceanddisplacementvaryastimeincreases.Theareaenclosedbyoneloopisequivalenttotheenergyrequiredtoperformonecycleofmotionofthemass.Forasystemwithstructuraldamping,theenergydissipatedpercycleisindependentoftheangularfrequency.ThisisnotthecasewhenthelossesareviscousasdiscussedinProblems1.1and1.2.
Fig.1-2Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithviscousdamping
Fig.1-3Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithfrictionaldamping
Realstructuressubjectedtovibrationstendtoshowaforce-displacementbehaviourshowninFig.1-4.Theforce-displacementcurvefollowsadis-tortedhysteresisloop,whichisnotreadilydescribedmathematicallyorphysically.However,ingeneral,theenergydissipatedpercycleratherthantheexactforce-displacementrelationshipisofprimaryimportanceforrealvibratorysystems.Therefore,formostpracticalpurposesviscousormate-rialorforthatmatterafrequencydependentdampingcanbeassumedforthesimpleharmonicmotionofastructure.
Frictionallossesandvelocitysquareddampingresultinnonlinearequa-tionswhenintroducedineq.(1-2).Examplesofnon-linearequationsandtheirsolutionsarepresentedinforexamplerefs.[1]?[3].TheRunge-Kuttamethod,usedfornumericalsolutionsinthetimedomain,isdiscussedinrefs.[1],[4]and[5].
Fig.1-4Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithdistortedstructuralorhystereticdamping
Forlinearproblems,dampingisoftendescribedasviscousorstructural.Inpractice,thisisnotnecessarilythecase.However,if,forexamplethelossesaresmallandalmoststructural,theparameterαineq.(1-4)canbeallowedtodependonfrequencyforharmonicorapproximatelyharmonicmotion.Thistypeofdampingmodelisdiscussedinsubsequentchapters.Furtherandmostimportantly,ifviscousorstructuraldampingisintroducedineq.(1-2),theresultingequationofmotionislinear.
Forsomeapplications,likeexperimentalmodalanalysisand.niteele-mentcalculations,acertainformofdampingisoftenassumed,seeChapter
10. Aspeci.cdampingmodelmightbenecessaryformathematicalornu-mericalreasons.However,themodelcouldviolatethephysicalcharacteris-ticsofthedampingmechanism.
1.2 Free vibrations
Freevibrationsofasystemoccurifforexamplethesystematacertaininstantisgivenadisplacementfromitsequilibriumpositionoraninitialvelocityatthatparticulartime.Afterthisinitialexcitation,noexternalforcesareappliedtothesystem.Theresultingmotionofthesystemisduetofreevibrations.Forallnaturalsystems,thereisalwayssometypeofdampingpresent.Forsuchsystems,thefreevibrationsdieoutafteracertainlengthoftime.Theinitialenergyofthesystemisabsorbedbylosses.
Forasimplemass-springsystem(1-DOF)withviscouslossestheequa-tionofmotionforfreevibrations,F(t)=0,givenbyeqs.(1-2)and(1-3)as
mx¨+cx?+k0x=0(1-7)
Thegeneralboundaryconditionsorinitialvaluesare
x(0)=x0,x?(0)=v0(1-8)
The traditional approach to solving this equation is to assume a solution of the form
x(t)=Aeλt (1-9)
?
Theeigenvalueλisobtainedbyinsertingthisexpressionineq.(1-7).Con-sequently
λ2 m + λc + k0 = 0 (1-10)
Itisconvenienttode.nethefollowingparameters:
ω02 =k0/m,β=c/(2m)(1-11)
Using these parameters, the solution to eq. (1-10) is
λ1,2=.β ± .β2 . ω02 orλ1,2=.β ± i.ω02 . β2 (1-12)
with i = √.1. In general, there are two solutions to eq. (1-7). The expression for the displacement x is therefore of the form
x(t)=A1eλ1t + A2 eλ2t (1-13)
??
The parameters A1 and A2 are determined from the initial condition (1-8).
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
媒体评论
前言
书籍介绍
《振声学(第1卷)》振声学主要研究典型结构在各种激励下的振动响应、振动传递以及声辐射的一般性规律。《振声学(第1卷)》第一卷首先回顾了单自由度系统和频域分析,接着重点讨论了固体中的波传播、纵波和横波的耦合关系、结构阻尼和结构连接引起的波衰减、以及梁和板的弯曲振动等,在此基础上讨论了变分分析、弹性支撑、流体介质中的波、声振耦合以及能量分析方法等内容。
网站评分
书籍多样性:9分
书籍信息完全性:8分
网站更新速度:9分
使用便利性:8分
书籍清晰度:5分
书籍格式兼容性:4分
是否包含广告:9分
加载速度:3分
安全性:5分
稳定性:8分
搜索功能:9分
下载便捷性:9分
下载点评
- 三星好评(118+)
- 实惠(596+)
- 全格式(285+)
- 体验好(323+)
- 收费(573+)
- 中评(125+)
- 四星好评(347+)
- 少量广告(118+)
- 一般般(162+)
- 傻瓜式服务(505+)
- 无颠倒(281+)
- 排版满分(166+)
- 超值(510+)
下载评价
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 温***欣:
可以可以可以
- 网友 寿***芳:
可以在线转化哦
- 网友 宫***凡:
一般般,只能说收费的比免费的强不少。
- 网友 融***华:
下载速度还可以
- 网友 权***颜:
下载地址、格式选择、下载方式都还挺多的
- 网友 国***芳:
五星好评
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 邱***洋:
不错,支持的格式很多
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 曹***雯:
为什么许多书都找不到?
喜欢"振声学(第一卷)"的人也看了
组织损伤与修复分子生物学 mobi 下载 网盘 caj lrf pdf txt 阿里云
沈石溪动物小说精品系列全8册白狼长篇系列沈石溪写的书 小学生四年级阅读课外书 五六狼王梦兔王圆点点 mobi 下载 网盘 caj lrf pdf txt 阿里云
二手房陷阱:买卖合同条款解读与风险防范 mobi 下载 网盘 caj lrf pdf txt 阿里云
卡耐基魅力口才与说话技巧 mobi 下载 网盘 caj lrf pdf txt 阿里云
(2014)5年中考3年模拟 初中英语 八年级上册 RJ(人教版) mobi 下载 网盘 caj lrf pdf txt 阿里云
留学SUPER之路 mobi 下载 网盘 caj lrf pdf txt 阿里云
Michael Jackson: 1958-2009: Life of a Legend 迈克尔?杰克逊:1958-2009 传奇人生 mobi 下载 网盘 caj lrf pdf txt 阿里云
建筑安全与防灾减灾 mobi 下载 网盘 caj lrf pdf txt 阿里云
资治通鉴(图文注释本)(全八册) mobi 下载 网盘 caj lrf pdf txt 阿里云
文学少女 爱恋插话集 01 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 【正版库存轻度瑕疵】名老中医话癌症 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 寂静的微世界【无穷小亮推荐】(文津奖得主、《蚂蚁之美》《动物王朝》作者新作|病毒和免疫学者胡毅推荐。) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 外汇短线交易的24堂精品课(第二版) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 战争中的丘吉尔CHURCHILL AT WAR 1940-1945 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 生态文明教育(二年级上册) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 实用特殊药品剂量手册 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 今日沙拉 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 电解水及其催化剂 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 乌龙院大长篇(活宝传奇36) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 1分钟快速上手旅游应急英语口语 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:9分
人物塑造:7分
主题深度:5分
文字风格:4分
语言运用:3分
文笔流畅:4分
思想传递:5分
知识深度:5分
知识广度:7分
实用性:3分
章节划分:9分
结构布局:3分
新颖与独特:5分
情感共鸣:3分
引人入胜:5分
现实相关:4分
沉浸感:4分
事实准确性:3分
文化贡献:9分