Euler mobi 下载 网盘 caj lrf pdf txt 阿里云

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:8分
书籍信息完全性:6分
网站更新速度:4分
使用便利性:3分
书籍清晰度:8分
书籍格式兼容性:3分
是否包含广告:7分
加载速度:5分
安全性:8分
稳定性:6分
搜索功能:7分
下载便捷性:6分
下载点评
- 格式多(480+)
- 三星好评(425+)
- 内涵好书(282+)
- 实惠(396+)
- 体验差(118+)
- 无漏页(327+)
- 收费(387+)
- 傻瓜式服务(617+)
- 种类多(582+)
下载评价
- 网友 冷***洁:
不错,用着很方便
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 康***溪:
强烈推荐!!!
- 网友 温***欣:
可以可以可以
- 网友 晏***媛:
够人性化!
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 融***华:
下载速度还可以
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 田***珊:
可以就是有些书搜不到
- 网友 师***怡:
说的好不如用的好,真心很好。越来越完美
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 寿***芳:
可以在线转化哦
喜欢"Euler"的人也看了
权力建构主义视角下的阿以关系研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
建设工程技术与计量 mobi 下载 网盘 caj lrf pdf txt 阿里云
键盘和声与即兴伴奏 窦青 李文红 刘建涛 中央音乐学院出版社 音乐 9787810966122新华正版 mobi 下载 网盘 caj lrf pdf txt 阿里云
全球治理的中国方案丛书-国际发展援助的中国方案 mobi 下载 网盘 caj lrf pdf txt 阿里云
当代中国记者群体(基于社会学的某种观照) mobi 下载 网盘 caj lrf pdf txt 阿里云
一千零一夜(一部经典的阿拉伯民间故事集,一场奇妙的异域之旅) mobi 下载 网盘 caj lrf pdf txt 阿里云
全新正版图书 社会工作与青年发展吴伟东知识产权出版社9787513052917 青少年社会工作中国人天图书专营店 mobi 下载 网盘 caj lrf pdf txt 阿里云
宫西达也小猪别哭了全6册儿童绘本3-4-5-7岁宝宝幼儿园大班中班故事书好孩子行为规范2狼与小猪别哭了你看起来好像很好吃恐龙系列8 mobi 下载 网盘 caj lrf pdf txt 阿里云
2册 保险法商精讲 + 66节保险法商课人身保险各类险种及保险合同专业术语 常见保险代理人投保疑问解答 保险法商功能 mobi 下载 网盘 caj lrf pdf txt 阿里云
人性的弱点 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 惊人的假说 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 米小圈上学记 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 商界奇才谈商系列:站在未来看今天——冯仑商业智慧 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 全国统计从业资格考试习题集 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 销售掌控术 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 走遍全球:纽约 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 老年女性乳腺癌的管理第二版 (英)马尔科姆·里德(意)里卡多·A.奥迪西奥 老年人乳腺癌治疗医学书籍 mobi 下载 网盘 caj lrf pdf txt 阿里云
- CAXA电子图板2013实用教程 臧艳红,王海强 编著 著 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 婚姻家庭·实用版法规专辑(新4版) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 中国邮票大图典清代卷 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:3分
人物塑造:5分
主题深度:8分
文字风格:5分
语言运用:5分
文笔流畅:6分
思想传递:5分
知识深度:3分
知识广度:6分
实用性:8分
章节划分:4分
结构布局:5分
新颖与独特:7分
情感共鸣:3分
引人入胜:7分
现实相关:5分
沉浸感:4分
事实准确性:6分
文化贡献:6分