煤力学(英文版) mobi 下载 网盘 caj lrf pdf txt 阿里云

煤力学(英文版)电子书下载地址
内容简介:
煤力学是岩石力学学科一个新的分支,是从防治煤矿瓦斯灾害和瓦斯资源化利用的角度出发,研究含瓦斯煤在地下采矿应力场环境中的力学性能的理论和应用科学,为煤炭和煤层瓦斯资源的开发和安全生产提供理论基础。《煤力学(英文版)》共分11章,主要介绍煤力学的定义、煤的生成与变质、煤的基本物理性质与孔裂隙特征、煤的瓦斯吸附与解吸性能、煤力学基础、含瓦斯煤的强度与变形、煤的渗透特性及渗透率演化模型、地应力及煤层瓦斯赋存、煤层中的瓦斯流动理论、煤力学在卸压瓦斯抽采及在煤与瓦斯突出中的应用。
书籍目录:
Contents
Preface
Chapter 1 Introduction 1
1.1 Coal and Coal Measure Strata 1
1.1.1 Coal and Coal Seam Gas 1
1.1.2 Coal Measure Strata 7
1.2 Structure of Coal and Its Simplified Physical Model 13
1.2.1 Pores and Fractures in Coal 13
1.2.2 Simplified Physical Model of Coal 20
1.3 Comparison of Coal and Rock 22
1.3.1 Comparison of Structure and Strength 22
1.3.2 Comparison of Adsorption Properties 23
1.3.3 Comparison of Gas Outburst and Rock Burst Disasters 25
1.4 Research Contents of Coal Mechanics 26
1.4.1 Definition of Coal Mechanics 26
1.4.2 Development of Coal Mechanics 27
1.4.3 Structure of This Book 31
References 32
Chapter 2 Coal Formation and Metamorphism 41
2.1 Coal Forming Process 41
2.2 Coalification 43
2.2.1 Coal Diagenesis 43
2.2.2 Coal Metamorphism 43
2.3 The Maceral Composition and Metamorphic Type of Coal 44
2.3.1 The Maceral Composition of Coal 44
2.3.2 Metamorphism Types of Coal 46
2.4 Gas Generation in Coal 49
2.4.1 Gas Generation During the Biochemical Coalification Period 50
2.4.2 Gas Generation During the Coal Metamorphism Period 50
2.4.3 Coal Seam Gas Composition 53
2.4.4 Occurrence Status of Coal Seam Gas 56
2.5 Effect of Magma Intrusion on Coal Metamorphism and Gas Occurrence 59
2.5.1 Ways of Magma Intrusion into Coal Seams 59
2.5.2 Thermal Temperature Field Analysis of Magma 60
2.5.3 The Influence of Magma on Coal Metamorphism 64
2.5.4 The Influence of Magma on Gas Occurrence 65
Reference 72
Chapter 3 Basic Physical Properties and Characteristics of Coal Pores and Fractures 75
3.1 The Basic Physical Properties of Coal 75
3.1.1 Moisture of Coal 76
3.1.2 Ash in Coal 78
3.1.3 Volatiles of Coal 80
3.1.4 Density of Coal 81
3.1.5 Hardness of Coal 82
3.2 Coal Pore Features 85
3.2.1 Classification of Coal Pore 85
3.2.2 Coal Pore Characterization Methods 87
3.2.3 Pore Structure Characterization 93
3.3 Coal Fracture Features 97
3.3.1 Classification of Coal Fracture 97
3.3.2 Fracture Distribution Characteristics in Coal 97
3.4 The Matrix Characteristics of Coal 100
3.4.1 Definition of Coal Matrix 100
3.4.2 Coal Matrix Scale 101
References 104
Chapter 4 Gas Adsorption-Desorption Properties of Coal 107
4.1 Gas adsorption Properties of Coal 107
4.1.1 Gas Adsorption Mechanism in Coal 107
4.1.2 Gas Adsorption Law of Coal 108
4.1.3 Main Factors Affecting Gas Adsorption Properties of Coal 110
4.1.4 Test Methods of Gas Adsorption Properties 118
4.2 Gas Desorption Properties of Coal 123
4.2.1 Gas Desorption Mechanism 123
4.2.2 Main Factors Affecting Gas Desorption Properties 124
4.2.3 Gas Desorption Models of Coal 129
4.2.4 Test Methods of Gas Desorption Properties 132
4.2.5 Application of Gas Desorption Properties of Coal in Gas Content Determination 133
4.3 Gas Diffusion in Coal 137
4.3.1 Physical Process of Gas Diffusion in Coal 137
4.3.2 Mathematical Models of Coal Gas Diffusion 139
4.3.3 The Desorption Index of Drilling Cuttings (K1) 141
References 143
Chapter 5 Foundation of Coal Mechanics 146
5.1 Stress State 146
5.1.1 Concept of Stress 146
5.1.2 Specification of Stress State at a Point 148
5.1.3 Plane Stress State and the Mohr Stress Circle 150
5.1.4 Principal Stresses and Their Directions 153
5.2 Strain State 156
5.2.1 Displacement and Strain Concepts 156
5.2.2 Geometric Equation 158
5.2.3 Principal Strain and Volumetric Strain 160
5.3 Strength Criterion 162
5.3.1 Mohr-Coulomb Strength Criterion 162
5.3.2 Drucker-Prager Strength Criterion 164
5.3.3 Griffith’s Strength Criterion 165
5.4 The Effective Stress 166
References 168
Chapter 6 Strength and Deformation Characteristics of Coal Containing Gas 170
6.1 Mechanical Tests of Coal Containing Gas 170
6.1.1 Testing Facility and Experimental Principles 171
6.1.2 Basic Requirements for Strength Tests of Coal Containing Gas 173
6.1.3 Coal Sample Preparation Methods 174
6.2 Strength Characteristics of Coal Containing Gas 180
6.2.1 Conventional Compression Tests of Coal 180
6.2.2 Pre-peak Confining Pressure Unloading Tests of Coal Containing Gas 186
6.2.3 Analysis of the Strength Characteristics of Coal Containing Gas 190
6.3 Deformation Characteristics of Coal Containing Gas 201
6.3.1 Analysis of the Deformation Characteristics of Coal Containing Gas 201
6.3.2 Influence of Gas on Coal Deformation 207
6.4 Constitutive Equation of Coal Containing Gas 209
6.4.1 Analysis of the Constitutive Relationship Characteristics of Coal 209
6.4.2 Linear Elastic Stage 213
6.4.3 Nonlinear Elastoplastic Stage 215
6.4.4 Ideal Plastic Stage 216
6.4.5 Strain Softening Stage 216
6.5 Macroscopic Damage Features of Coal Containing Gas 216
6.6 Failure Mechanism and Strength Theory of Coal Containing Gas 220
6.6.1 C. D. Martin Fracture Strain Model 220
6.
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Chapter 1 Introduction
Learning outcomes
Coal formation, macroscopic composition of coal/rock, structure of coal, coal seam gas and coal measure strata;
Pore and fracture structures in coal, simplified physical models of coal and their significance in the study of coal mechanics;
Comparison of coal and rock structures, strength, adsorption properties and disasters.
1.1 Coal and Coal Measure Strata
1.1.1 Coal and Coal Seam Gas
1. Coal formation
Coal is one type of solid-state combustible organic rocks, which is transformed from plant remains by complex biochemistry, physical chemistry and geochemistry effects (also known as the coal-forming process). Coal is mainly composed of organic matter and a small amount of inorganic minerals. The organic matter in coal is mainly composed of five elements, namely carbon, hydrogen, oxygen, nitrogen and organic sulfur, of which the carbon, hydrogen and oxygen contents constitute more than 95% of the total organic matter. Generally, it is believed that coal is made up of large aromatic rings and fused rings with fat side chains, and the skeletons of these rings are made of carbon elements. With the increasing coal rank, the content of carbon increases while the content of hydrogen and oxygen decreases, and the content of nitrogen slightly reduces. In China, the carbon content is 55%-62% for peat (on dry and ash-free basis), 60%-76.5% for lignite, 77%-92.7% for bituminous coal, and for anthracite coal, carbon is usually above 89%. The inorganic matter in coal is mainly composed of water and minerals [1].
The coal-forming process can be divided into two stages. The first stage is peatification or saprofication, which mainly occurs in the peat swamps, lakes and shallow seas that are located on the earth’s surface. In this stage, driven by the biogeochemical effects and under the action of various microorganisms, the remains of plants continuously decompose, combine and accumulate, resulting in the lower plants turning to sapropel while the higher plants form peat. The second stage of the coal-forming process is the stage of coalification. In this stage, the peat or sapropel formed in the previous stage is buried deep underground due to the subsidence of the earth’s crust. The increase of ground temperature as well as pressure convert the coal-forming process from peatification/saprofication into physi-chemical reactions (namely the coalification). Moreover, coalification can be further divided into diagenesis and metamorphism, of which the transformation process from peat to young lignite is called diagenesis and the transformation process from young lignite to old lignite, bituminite coal even anthracite is called metamorphism.
In China, from the early Palaeozoic stone coal (belongs to the sapropelite) to the Quaternary peat, there exist 14 coal forming periods, of which the most important coal forming periods are: ① early Carboniferous in South China; ② Carboniferous-Permian in North China; ③ Permian in South China; ④ late Triassic in South China; ⑤ early and middle Jurassic in Northwest China; ⑥ late Jurassic to early Cretaceous in Northeast China; ⑦ Tertiary period in Northeast/Southwest/Coastal China. Statistics indicate that the reserves of the early and middle Jurassic coal forming periods contribute for 60% of China''s total coal resources, and the reserves of the Carboniferous-Permian coal forming period in North China contribute for 26% of China''s total coal resources.
2. Macroscopic composition of coal
The macroscopic composition of coal is the basic unit of coal that can be distinguished by naked eyes, including vitrain, bright coal, dull coal and fusain, of which vitrain and fusain are the simple composition of coal while the bright coal and dull coal are the complex composition of coal [1].
Vitrain is transformed from plants’ lignocellulosic tissue through the effect of gelatinization. The microstructure of vitrain is relatively simple, and it is one of the simple macroscopic compositions of coal. The color of vitrain is dark and shiny. Vitrain is also the darkest and the most lustrous element in coal. It has a pure texture, a uniform structure, a shell-like fracture and a internal fissure. The vitrain is brittle in texture and easy to break into angular pieces. In coal seams, vitrain always shapes as convex lens or ribbon, with a thickness ranging from several to 20 mm, and sometimes it also exists in bright coal and dull coal in a lineation form.
Fusain is transformed from plants’ woody fibrous tissue which slowly oxidized in a water shortage oxygen-enriched environment or formed due to forest fires. Fusain is also one of the simple macroscopic compositions of coal. Due to the large porosity and strong ability of oxygen adsorption, the coal seams that are rich in fusain will easily be prone to spontaneous combustion. The appearance of fusain is similar to charcoal, with gray color and obv
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:6分
书籍信息完全性:8分
网站更新速度:9分
使用便利性:9分
书籍清晰度:9分
书籍格式兼容性:7分
是否包含广告:8分
加载速度:7分
安全性:8分
稳定性:9分
搜索功能:6分
下载便捷性:7分
下载点评
- 五星好评(80+)
- 无缺页(465+)
- 无颠倒(586+)
- 图文清晰(132+)
- 赚了(376+)
- 购买多(214+)
- 引人入胜(635+)
- 服务好(90+)
- 图书多(147+)
- 在线转格式(409+)
- 格式多(648+)
- azw3(595+)
下载评价
- 网友 戈***玉:
特别棒
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 家***丝:
好6666666
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 郗***兰:
网站体验不错
- 网友 堵***洁:
好用,支持
- 网友 寇***音:
好,真的挺使用的!
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 冷***洁:
不错,用着很方便
- 网友 薛***玉:
就是我想要的!!!
喜欢"煤力学(英文版)"的人也看了
晚年周扬 mobi 下载 网盘 caj lrf pdf txt 阿里云
炫动科技 DK爬行动物探秘(精装) mobi 下载 网盘 caj lrf pdf txt 阿里云
2022春七彩阅读三年级下册人教版小学生3年级下快乐阅读同步教材课文基础阅读理解课外阅读素养读本辅导书 mobi 下载 网盘 caj lrf pdf txt 阿里云
高分子化学学习指南 mobi 下载 网盘 caj lrf pdf txt 阿里云
西游记 小学生版 原著四年级五年级六年级 硬壳精装 四大名著全套青少年版 四五课外阅读书籍白话文儿童版学生版 mobi 下载 网盘 caj lrf pdf txt 阿里云
正午的供词 mobi 下载 网盘 caj lrf pdf txt 阿里云
中公版·2013甘肃省公务员录用考试专用教材 mobi 下载 网盘 caj lrf pdf txt 阿里云
石墨炔(从发现到应用)(精)/低维材料与器件丛书 mobi 下载 网盘 caj lrf pdf txt 阿里云
张宇2024考研数学基础30讲+300题(线性代数分册)书课包 启航教育 适用于数学一二三 mobi 下载 网盘 caj lrf pdf txt 阿里云
德鲁克的最后一堂课DEFINITIVE DRUCKER mobi 下载 网盘 caj lrf pdf txt 阿里云
- 建筑施工模板和脚手架试验标准(JGJT414-2018备案号J2483-2018)/中华人民共和国行业标 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 建筑火灾安全工程导论 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 从小读到大 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 植物的奋斗 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 2024新版朝读晚背核心考点清单初中化学KXYB mobi 下载 网盘 caj lrf pdf txt 阿里云
- 非平稳随机信号的分数域分析与处理 mobi 下载 网盘 caj lrf pdf txt 阿里云
- PP猴 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 香巴拉 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 历代笔记小说大观:南部新书·茅亭客话[宋]钱易、黄休复上海古籍出版社【现货实拍 可开发票 下单速发 正版 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 学前英语教育(第二版) 清华大学出版社 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:8分
人物塑造:3分
主题深度:8分
文字风格:6分
语言运用:9分
文笔流畅:8分
思想传递:3分
知识深度:9分
知识广度:7分
实用性:9分
章节划分:7分
结构布局:4分
新颖与独特:3分
情感共鸣:6分
引人入胜:3分
现实相关:5分
沉浸感:9分
事实准确性:6分
文化贡献:9分